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A B S T R A C T   

We present a revised estimate of the maximum depth of the Challenger Deep, generally considered the deepest 
area of the world’s oceans, based on a series of submersible dives conducted in June 2020. These depth estimates 
are derived from acoustic altimeter profiles referenced to in-situ pressure and corrected for observed oceano-
graphic properties of the water-column, atmospheric pressure, gravity and gravity-gradient anomalies, and 
water-level effects. We also present comprehensive methods to determine depth from observed pressure using 
modern standards and estimate the associated uncertainty. For the Challenger Deep, the deepest observed sea-
floor depth was 10,935 m (±6 m at 95% C.I.) below mean sea level. For this work, the error term is dominated by 
the uncertainty of the pressure sensor used but we show that the gravity correction is substantial. We compare to 
these new results other recent acoustic and pressure-based measurements for the Challenger Deep.   

1. Introduction 

In June of 2020 Victor Vescovo conducted multiple dives to the 
bottom of the Challenger Deep, the deepest point in the Marianas Trench 
and deepest known area of the world’s oceans. Using the crewed deep 
submergence vehicle (DSV), Limiting Factor, and three instrumented 
landers, Vescovo and his team made six successful transects across areas 
of the Challenger Deep identified from ship-based mapping efforts as 
candidates for the deepest location. Based on the short-range altimeter 
records vertically referenced using hydrostatic pressure, the deepest 
observed seafloor depth was 10,935 m (±6 m at 95% C.I.) below mean 
sea level. In calculating this depth, we develop here a rigorous approach 
to deriving pressure-based depth measurements using the modern 
oceanographic standards (IOC, SCOR and IAPSO, 2010) and present an 
associated error model. We compare our results with modern estimates 
from both surface-based mapping campaigns and direct pressure-based 
measurements. Apart from the obvious interest in refining the depth 
estimate of the deepest part of the ocean, we hope that the methods 
outlined here help with other high-precision, pressure-based measure-
ments in the ocean. To date, the inaccuracy of available pressure sensors 

has precluded such precise work against a stable datum like mean-sea 
level. Ongoing advances in instrumentation have now opened this 
avenue, and we hope that the detailed analysis and methods shown here 
will be useful in other applications. Accordingly, we detail both the 
theory and methods of determining depth from observed pressure as 
well as validating the accuracy of a pressure sensor deployed to the 
bottom of the ocean. 

Anyone who has swum even a few meters below the surface has 
experienced how hydrostatic pressure increases with depth, and pres-
sure has long been a key part of the study of the oceans. Early oceano-
graphic practice was built around the assumption that highly accurate 
direct pressure or height measurements were not practicable, so other 
proxies – such as derived geostrophic heights – have long been the tools 
used by oceanographers (Puig, 2018). In the oceanographic community, 
measured properties of the water column are used to infer baroclinic 
currents as well as turbulence and mixing (e.g., Taira et al., 2005; van 
Haren et al., 2017 for examples in the Challenger Deep). In the mapping 
and charting community, submerged pressure gauges are used to 
monitor water levels and, before the introduction of modern mapping 
systems, diver-held pressure gauges were a widespread tool for 
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measuring depths on submerged hazards (Umbach, 1976). As the ac-
curacy of pressure gauges and corresponding mapping requirements 
have increased, these studies have developed beyond the early 
basin-wide correction tables (e.g., Bialek, 1966). The increased use of 
autonomous underwater vehicles for mapping applications has required 
attention to the vertical position of the vehicle within the water column 
(e.g., Jalving, 1999; Willumsen et al., 2007). Engineering structures on 
the deep seabed require precise positioning and metrology (Puig, 2018). 
Despite advances in pressure gauges, pressure sensor calibration and 
drift remain a challenge (Polster et al., 2009). Recent work has featured 
innovative approaches to removing this drift with in-situ calibration 
routines (Sasagawa et al., 2016). Where pressure-based measurement 
applications in the ocean demand high precision, many current workers 
use a relative rather than an absolute datum. Some examples of these 
relative datum-type approaches that obtain relative precision on the 
order of cm to mm are: high-pass filtering in time for tsunami moni-
toring (Eble and Gonzalez, 1991); using a campaign of measurements of 
seafloor benchmarks to infer movement of a submerged volcano relative 
to the stable seafloor around it (Chadwick et al., 2006); and comparison 
of relative bottom-pressures across an ocean basin to infer 
mass-transport in the oceans (Fujimoto et al., 2003). In each of these 
cases, the high reported precision is only relative to other measurements 
nearby in time or space and not to a reference datum like mean sea-level. 

In other applications, measurement of sea-surface heights with 
modern satellite altimetry data, coupled with high-accuracy bottom 
pressure measurements show promise to better understand oceano-
graphic circulation and help tease apart the drivers of sea-level rise 
between volumetric (i.e. more total water in the oceans) and steric ef-
fects (i.e. expansion of the oceans due to increased heat content) (see 
Williams et al., 2015 for an experimental example and Vinogradova 
et al., 2007 for a model-based analysis). What is missing from the 
literature, to date, is a comprehensive method for accurately deter-
mining the depth from pressure relative to an absolute datum, such as 
mean sea level, at the precision that is now supportable with modern 
pressure sensors. We provide that here. 

1.1. The general features of the Challenger Deep and the locations of 
depth estimates 

The deepest section of the Marianas Trench, the Challenger Deep, is 
located approximately 200 nm SW of Guam. With a broad analysis of 
existing data, Stewart and Jamieson (2019) reinforced the general 
consensus that the Challenger Deep is the deepest location in the world’s 
oceans. This was further bolstered by the results of the mapping 
component of the Five Deeps Expedition (Bongiovanni et al., 2021), 
which sought to locate and map the deepest locations in each of the 
world’s oceans. Since the efforts of the HMS Challenger in 1952 (Car-
ruthers and Lawford, 1952) and the R/V Stranger in 1959 (Fisher, 2009), 
the Challenger Deep has been recognized to consist of an elongated 
section with distinct subbasins or sediment-filled pools. As detailed by 

Nakanishi and Hashimoto (2011) the Challenger Deep consists of three 
depressions or basins along the axis of the trench, referred to as the 
eastern, central, and western basins. There is little agreement as to 
which basin is deepest or the deepest overall depth. The maximum depth 
estimates discussed in this report are located in and around each basin 
(Table 1, Fig. 1). 

1.2. A brief history of depth measurements of the Challenger Deep 

Others have recently given comprehensive accounts of the history of 
the depth measurements in the Challenger Deep, starting with the 
famous world-circling expedition of the HMS Challenger in 1873–76 (e. 
g., Nakanishi and Hashimoto, 2011; Gardner et al., 2014). While inter-
esting from a historical perspective, the accuracy of methods such as 
taut-wire sounding (e.g., Carruthers and Lawford, 1952) or hand-tossed 
explosives and aurally detected returns (e.g., Fisher, 1953) have been 
surpassed by modern methods with respect to accuracy, coverage, and 
resolution and we do not include those measurements in our 
comparisons. 

1.2.1. Modern acoustic measurements 
Since the adoption of modern multibeam echosounders, a number of 

missions have mapped the Marianas Trench in the vicinity of the Chal-
lenger Deep. Neither the locations nor values of the reported maximum 
depths are in agreement between many of these missions. Most recently: 
Taira et al. (2005) used a full profile conductivity, temperature and 
depth (CTD) casts from 1992 to correct the contemporaneous (1992) 
readout depth of a SEA-BEAM 500 operated as a single beam and re-
ported a maximum depth of 10,989 m with no uncertainty reported; 
Nakanishi and Hashimoto (2011) used data from a number of Japanese 
cruises around the early 2000’s and calculated a maximum depth of 10, 
920 ± 5m (at 95% C.I.) in the eastern basin; Gardner et al. (2014) 
determined a maximum depth of 10,984 ± 25 m (at 95% C.I.) in the 
western basin based on data acquired in 2010 from a EM122 on the 
USNS Sumner; van Haren et al. (2017) reported a depth of 10,925 ± 12 m 
(at 95% C.I.) in the western basin using the 2016 data from the EM122 
on the R/V Sonne; Bongiovanni et al. (2021) reported a maximum depth 
in the eastern basin of 10,924 ± 15 m (at 95% C.I.) from a EM124 during 
the Five Deeps Expedition; Loranger et al. (2021) opportunistically used 
the impulse from an imploding instrument and reported a depth of 10, 
983 ± 6 m (reported at 1-sigma, roughly 12 m at 95% C.I.) near the 
central basin. 

The disagreement between these maximum depth estimates exceeds 
the estimated uncertainty of each, a situation which calls into question 
either the measurement or the reported uncertainty. Additionally, the 
location of reported deepest locations differs substantially between re-
ports. Since the advent of global satellite positioning systems used for 
positioning of these modern mapping missions from the 1990’s onward, 
the horizontal accuracy of the ship position is likely on order of meters to 
tens of meters. However, the effective horizontal resolution from the 

Table 1 
Published depths discussed in this paper. Year is when the measurement was made. Letter corresponds to location on Fig. 1.  

Letter Platform Year Lat Long Depth (m) Source 

A R/V Vityaz 1957 11◦20.9′N 142◦11.5′E 11,034 Taira et al. (2005) citing Hansen, 1959 
B Trieste 1960 11◦18.5′N 142◦15.5′E 10910 Piccard and Dietz (1961) 
C R/V Hakuho Maru 1992 11◦22.6′N 142◦35.0′E 10,989 Taira et al. (2005) 
D ROV Kaiko 1997 11◦22.1′N 142◦35.4′E 10,911 Takagawa et al. (1997) 
E R/V Kairei 2002 11◦22.3′N 142◦35.6′E 10,920 Nakanishi and Hashimoto (2011) 
F ROV Nereus 2009 11◦22.1′N 142◦34.4′E 10,903 Fletcher et al. (2009) 
G USNS Sumner 2010 11◦19.8′N 142◦12.0′E 10,984 Gardner et al. (2014) 
H DSV Deepsea Challenger 2012 11◦22.2′N 142◦35.4′E 10,908 Gallo et al. (2015) 
I Deepsea Challenger Lander 2012 11◦22.1′N 142◦26.0′E 10,918 Gallo et al. (2015) 
J Mk III Implosion 2014 11◦21.3′N 142◦27.2′E 10,983 Loranger et al. (2021) 
K USCGC Sequioia 2015 11◦20.1′N 142◦12.0′E 10,854 Dziack et al. (2017) 
L R/V Sonne 2016 11◦19.9′N 142◦12.1′E 10,925 van Haren et al. (2017) 
M DSV Limiting Factor 2020 11◦22.3′N 142◦35.3′E 10,935 this paper  
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surface-ship mapping systems (and thus the overall precision of the 
position of the depth estimate) is on order of hundreds of meters 
(Gardner et al., 2014; Nakanishi and Hashimoto, 2011). The individual 
basins, however, are separated by tens of km. 

Van Haren et al. (2017) and Loranger et al. (2021) argue that the 
difference between the various acoustic depth results may be due to 
different strategies used to determine the sound speed profile through 
the water column, a critical aspect of any acoustic ranging measurement 
(Beaudoin et al., 2009). We compare these profiles and examine the 
impact of the different sound speed equations used by these authors in 
section 5.1, finding that the sound speed alone is insufficient to explain 
the differences. 

1.2.2. Pressure-based measurements 
Prior to the Limiting Factor, only two crewed submersibles, three un- 

crewed vehicles, and a small number of free-fall landers are known to 
have visited the Challenger Deep: Jacques Piccard and Don Walsh in 
Trieste in 1960, the Japanese Agency for Marine-Earth Science and 
Technology’s (JAMSTEC) remotely operated vehicle (ROV) Kaiko in 
1995 and 1998, JAMSTEC’s ROV ABISMO in 2008, the Woods Hole 
Oceanographic Institution’s hybrid autonomous/remotely-operated 
underwater vehicle Nereus in 2009, and James Cameron in Deepsea 
Challenger in 2012. 

Trieste observed a pressure-derived depth of 10,910 m (Piccard and 
Dietz, 1961). No uncertainty was reported with this depth and we have 
been unsuccessful in locating the original pressure instrument in the U.S. 
Navy’s historical artifact collections to better estimate the associated 
uncertainty. Piccard reported that the pressure gauge was originally 
calibrated in fresh water, and corrections for salinity, temperature, 
temperature, and gravity were later applied by J. Knauss of Scripps 
Institute of Oceanography and Dr. J. Lyman of the National Science 
Foundation. Fisher (2009) reported that Art Maxwell from the Office of 
Naval Research issued a notice on March 10, 1961 correcting the Trieste 
depth to 10,913 ± 5 m. However, we have been unable to identify the 
details of these corrections or find an analysis of the uncertainty in the 
literature. Kaiko reportedly reached a maximum depth of 10,911 m in 
1996 (Takagawa et al., 1997) and 10,924 m in 1998 (Barry and 
Hashimoto, 2009). While Takagawa et al. state that the observed 

pressure was corrected for temperature and salinity, the details of the 
calculations and associated uncertainty were not published. The ROV 
ABISMO reached 10,257 m, but Yoshida et al. (2009) acknowledged that 
the deepest part of the trench was not visited because of limited cable 
length. Nereus reportedly reached 10,903 m (Fletcher et al., 2009), but 
details of the calculation and uncertainties were not published. Deepsea 
Challenger dove to a depth of 10,908 ± 3 m and un-crewed landers 
deployed with that mission observed depths of 10,918 ± 3 m (Gallo 
et al., 2015). Additionally, Dziak et al. (2017) deployed a 
bottom-moored hydrophone and pressure sensor in 2015 and calculated 
a bottom depth of 10,854 m. However, they noted that the position of 
the dropped sensor was likely not in the deepest possible location. 

2. Materials and methods 

2.1. Instrument configuration, general strategy, and software 

Prior to conducting submersible dives, the vicinity of the trench was 
mapped using the ship-mounted EM124 multibeam of the support ship 
Pressure Drop (Bongiovanni et al., 2021). This map was then used to plan 
the submersible dives across the deepest parts of each basin. The 
instrumentation suite for the Limiting Factor dives consisted of up to 
three instrumented free-fall landers and instrumentation on the sub-
mersible itself. Each lander was fitted with a pressure gauge (RBRso-
lo3D|Deep) and CTD sensor (Seabird SBE49). The submersible had an 
acoustic altimeter (Kongsberg 1107) and three CTD sensors (Seabird 
SBE49). The landers were deployed before the submersible and 
remained on the seabed during the dive. The landers were used for 
navigation on the seabed, and each dive rendezvoused with at least one 
lander on the seabed. 

The RBR pressure gauges on the landers are twice as accurate as the 
pressure gauges in the CTD sensors (specified by the manufacturer at 
0.1% of full scale or 10 m at 95% CI for the RBR vs 0.2% of full scale or 
20 m at 95% CI for the CTD). In operation, we also observed drift at 
depth to be smaller with the RBR instruments than the pressure sensors 
in the CTD. The stable location of the sensors on the landers also allows 
us to model instrument drifts and verify correct application of water- 
level corrections. 

Fig. 1. The Challenger Deep consists of three basins over 10,900 m deep. 10,900 m contour shown in orange. Maximum depth estimates discussed in this report are 
shown by red triangles in the western basin, yellow triangles in the central basin, and blue triangles in the eastern basin. Labels reference Table 1. Bathymetry from 
Bongiovanni et al. (2021). 
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Our general approach to estimate seafloor depth is to use the landers 
to establish a stable datum at the seafloor relative to mean-sea level 
(MSL). We then tie into this seafloor datum by passing by the lander 
location with the submersible-based altimeter. The submersible altim-
eter is vertically controlled by the on-board CTD pressure sensor, but the 
offset of this relatively inaccurate sensor is removed by the seafloor tie 
point with the lander-established datum. We use the Thermodynamic 
Equation of State of Seawater 2010) (TEOS-10; IOC, SCOR and IAPSO, 
2010) and the associated Gibbs Seawater (GSW) toolbox (McDougal and 
Barker, 2011) to calculate the density of the water column and deter-
mine an initial depth estimate. In establishing a stable datum at the 
seafloor, we correct for: the in-situ observed density of the seawater 
from contemporaneous salinity and temperature profiles; surface grav-
ity and gravity-gradient anomalies, water-levels (i.e., tides), and atmo-
spheric pressure at the dive location. These corrections are discussed in 
section 3 where we detail our approach and develop an uncertainty 
estimate for each. 

We used the open-source Python packages NumPy (Harris et al., 
2020) and SciPy (Virtanen et al., 2020)) for data processing and anal-
ysis, Matplotlib (Hunter, 2007) for plotting figures, and GeoMapApp 
(http://www.geomapapp.org) for geographic figures. 

2.2. Pressure sensor calibration and drift corrections 

2.2.1. RBR pressure sensor drift and observed precision of lander depths 
Before deployment, the RBR pressure gauges were calibrated against 

Paroscientific Inc., DigiQuartz pressure gauges independently at two 
facilities. The calibrations suggested accuracies considerably higher 
than specified for these instruments. The maximum difference between 
the three sensors and the reference standards was 0.6 dbar, roughly an 
order of magnitude smaller than the specified accuracy of the RBR 
gauges (0.1% of full scale or 10 m at 95% CI). 

Following correction for density, gravity, water levels, and atmo-
spheric pressure (as detailed in Section 3), the pressure records for the 
time the landers were on the seabed showed consistent drift character-
istics across instruments and deployments. In all cases the pressure re-
cord drifted towards less pressure with time (as if the instrument were 
rising up in the water column). It is thus unlikely that the pressure 
change reflects a settling of the instrument into the seabed. This deep-to- 
shallow drift was also observed in the long-term deployment of a similar 
sensor in 2015 by Dziak et al. (2017) that we used to extract water levels 
(section 3.4.1). We extracted the seabed portion of the lander pressure 

records and fit a piecewise linear model (Fig. 2). 
The initial drift of these gauges was 15±3 cm/h and the final drift 

7±3 cm/h. On average, the inflection point was 4 h after the lander 
touched down, however, there was considerable variation in the time of 
this inflection point. We do not know the root cause of the drift or the 
differences in timing; drivers might include different descent rates or 
different thermal coupling to the environment. We subtracted the 
individually-fitted drift of the sensors on the seabed and then averaged 
the de-trended depth over the time on the seabed to obtain the estimate 
of the MSL relative depth at the lander location. We then used this depth 
to tie the submersible mounted instruments to the MSL datum when the 
submersible rendezvoused with the lander. 

2.2.2. RBR pressure sensor accuracy and CTD pressure sensor drift from 
ganged sensor deployment 

In three cases, two or three of the RBR pressure gauges were installed 
on a common platform. This allowed us to evaluate the relative accuracy 
of the sensors in practice. On June 20, all three RBR gauges were 
mounted at the same height on a single lander. On June 22, two RBR 
gauges were installed on one lander, and on June 26, all three RBR 
gauges were installed on the submersible. Using RBR Sn204134 as a 
reference, Sn204133 was consistently shallower by 4 m and Sn204135 
was shallower by 1.5 m. We set RBR Sn204134 as the standard because it 
was deployed on the lander used for all submersible-lander rendezvous. 

For the June 26 dive only, all three RBR sensors were installed on the 
submersible along with the CTDs. We used this dive to evaluate the drift 
of the submersible CTD pressure sensors. Fig. 3 shows the depth of the 
CTD sensor relative to RBR Sn204134. The apparent drift in this figure is 
two-fold; it includes both the drift of the RBR sensor and the CTD 
pressure sensor. The relative drift is approximately 0.5 m/h. We previ-
ously observed a deep-to-shallow drift of the RBR gauges when deployed 
on static landers. The CTD pressure sensor drifted from shallow to deep. 
We are confident in the magnitude and direction of the RBR sensor drift 
from the lander deployments (not appreciably more than 15 cm/hour). 
However, because the timing of the shift in RBR drift rates was variable 
in the lander deployments, we do not have confidence in being able to 
estimate the RBR drift absent reference to a stable datum (the sub-
mersible was moving through the dive). Therefore, it is difficult to 
determine the CTD drift from the comparison with the RBR gauges and 
we have not attempted to further correct for the CTD sensor drift. This 
does mean that when we use the submersible-mounted CTD pressure to 
control the vehicle depth, there is a drift on either side of the lander tie. 

Fig. 2. Lander pressure drift during time on seafloor (this example from June 7 
dive (Sn204134)). ‘Raw’ here is corrected for everything except sensor drift. 
Black line shows the two-part piecewise linear model which was used to remove 
the drift. Dotted line shows average depth of the de-trended gauge. 

Fig. 3. Submersible-mounted CTD pressure-derived depth less the RBR 
Sn204134 derived depth for bottom segment of June 26 dive. Drift is a com-
bination of RBR drift (from deep to shallow) and CTD pressure sensor drift 
(from shallow to deep). 
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The seafloor prior to the tie is biased progressively shallower away from 
the tie point. The seafloor after the lander tie point is biased progres-
sively deeper. This drift is approximately 0.5 m/hour, though the CTD 
drift appears to be more exponential than linear, especially early in the 
deployment (Fig. 3). The CTD pressure sensor drift does not affect the 
depths at the lander tie points. 

For the June 26 dive, because all three RBR gauges were mounted on 
the submersible we were unable to use the lander-tie approach to control 
the submersible depth. We used RBR Sn204134 to directly determine the 
vehicle depth. Because we did not have any measurement of the drift of 
this instrument when installed on the submersible, we have not cor-
rected for RBR drift for this dive. However, based on the other de-
ployments of this sensor, we are confident of the direction of the drift 
(from deep to shallow) and overall magnitude. This means that the re-
ported depths of this dive are biased up to a meter shallow, with the 
points later in the dive biased more than those early in the dive. 

2.3. Specific steps to calculate bottom depth from pressure and 
submersible altimeter records  

1. Remove atmospheric pressure time series from pressure records  
2. If pre-deployment surface pressures are available in record, 

remove to zero in-situ atmospheric pressure.  
3. Using the conductivity, in-situ temperature, and pressure record 

from CTD profile, calculate Absolute Salinity (SA) and Conserved 
Temperature (CT) using GSW toolbox (gsw.SA_from_SP and gsw. 
CT_from_t).  

4. Use the SA and CT profile to calculate dynamic height anomaly as 
a function of pressure (gsw.geo_strf_dyn_height).  

5. Interpolate dynamic height anomaly to pressure at observed 
pressure  

6. Calculate water column height (i.e. depth) using GSW toolbox 
(gsw.z_from_p) and interpolated dynamic height anomaly.  

7. Correct for surface gravity anomaly and surface gravity gradient 
anomaly.  

8. Apply water-level correctors to reduce observation to MSL datum  
9. Apply vertical offsets from lander pressure sensor to seafloor  

10. For landers, de-trend calculated depths and average to establish 
seafloor datum  

11. Apply altimeter heights to submersible pressure from CTDs 
mounted on submersible to obtain uncorrected bottom depths.  

12. At lander rendezvous points, tie altimeter observed seafloor to 
lander-established datum. 

3. Theory and component uncertainty estimation 

3.1. Pressure to depth calculations 

From the hydrostatic equation of seawater, we use the equivalence of 
the pressure integral of the specific volume of the seawater and the 
vertical integration of the gravity. Both yield a potential known as dy-
namic height (IOC, SCOR and IAPSO, 2010). See Appendix A for a more 
comprehensive derivation and discussion of this equation. 

∫P

0

a0 dp +

∫p

0

δ dp = gH , g =
1
H

∫H

0

g dh (1)  

Where a0 is the specific volume of standard ocean, δ is the specific 
volume anomaly, g is gravity and H is the height of the water column. 
The integral of the specific volume anomaly, the second term of the left 
side of Eqn 1, contains the information on density from the CTD profile 
and is called the dynamic height anomaly or the geopotential anomaly 
(IOC, SCOR and IAPSO, 2010). Rearranging: 

∫ P
0 a0dp +

∫ P
0 δdp

g
=H (2) 

We note that the calculation of the average gravity over the water 
column necessarily involves knowing the height that forms the upper 
bound of the integral, thus Eqn 2 is not a strictly closed form. 
Substituting a linear pressure-to-depth approximation yields acceptably 
small error in most cases. This approximation is discussed in greater 
detail in section 3.3 Gravity in the Sea. 

3.2. Estimation of CTD-Based uncertainty 

We used a Monte Carlo method to estimate the depth uncertainty 
from the CTD measurement. We scaled a Gaussian random error to the 
specified accuracy of the Seabird sensor (conductivity: 0.0003 S/m, 
temperature: 0.002 ◦C, and pressure: 0.1% of full scale or 11 dbar), 
added a random error from those distributions to a measured profile (in 
this case a profile from June 26, 2020) and then calculated the depth 
from a pressure of 11,250 dbar (about 10,920 m). We repeated this 
process 1,000 times and calculated standard deviation of the resulting 
distribution of derived depths. To evaluate the sensitivity of the result to 
the three sensors in the CTD, we repeated this process for seven possible 
values of each instrument uncertainty centered on the reported uncer-
tainty for a total of 343,000 trials. When the random error was freshly 
drawn for each point in the cast, the estimated depth uncertainty was 2 
cm. When we applied the random error as a bias to all measurements in 
each modeled cast of our statistical ensemble, the estimated depth un-
certainty was 11 cm. While there is likely some stochastic noise between 
each measurement within a profile, it is unreasonable to expect that the 
overall uncertainty should decrease with the number of measurements 
in a CTD profile, as it does when we apply the error on a point-by-point 
basis. Accordingly, we think the second method better captures the ex-
pected uncertainty from this CTD sensor when applied to this mea-
surement. Over the range of values considered, we found the resultant 
uncertainty is linearly sensitive to changes in the pressure sensor accu-
racy, but not sensitive to changes in the temperature or conductivity 
sensor accuracy. 

Williams et al. (2015) present a similar analysis of the expected 
pressure uncertainty from CTD uncertainty for the case of a tall-mooring 
with five of the same model CTD sensors distributed along the mooring. 
They report expected pressure variability from CTD uncertainty to be 
much lower (1 cm if correlated, 0.25 cm if uncorrelated). We think two 
factors explain the difference. Williams et al. (2015) assumed stated 
instrument accuracies are at two-sigma while we have used one-sigma 
(Seabird, personal communication, 2020). Additionally, the depth of 
our analysis is more than twice as deep (11 km vs 5 km). This second 
factor has two impacts. The first is that the sum of the errors is naturally 
larger over a larger column. The second is that the stated uncertainty of 
the pressure sensor is referenced to the full scale. We have used 11 km 
sensors in our analysis while we assume Williams et al. used sensors with 
maximum pressure ranges of less than 2.5 km. Overall, these factors 
account for a factor of up to 16 between our estimates. Interestingly, 
Williams et al. (2015) find that the conductivity and temperature mea-
surements are limiting in their application, where the pressure sensor of 
the CTD clearly dominates the uncertainty in our case. This is likely 
because the absolute accuracy of our sensor is much poorer because of 
the greater depth range. 

Taira et al. (2005) and van Haren et al., 2021 detail additional 
correction to hadal CTD profiles to account for subtle pressure effects. 
These are important for the stability and turbulence parameters 
considered in those works, but are not significant for our analysis and we 
have not applied these corrections. 
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3.3. Gravity in the sea 

The gravity term in Eqn 2 merits attention. We show that corrections 
driven by the gravity term are relatively large compared to the other 
correctors we consider. As described by Hackney and Featherstone 
(2003), there are substantial differences between the geophysical, pro-
specting, and the geodetic communities on even some basic definitions 
of gravity, vertical gravity gradients, and various applied corrections. 
See Appendix B for more detailed derivations and discussions on gravity 
in the sea. 

Both the UNESCO and TEOS-10 formulations use the ellipsoid based 
GRS 80 gravity model (Moritz, 1980) for the surface gravity as a func-
tion of latitude and a linear model of the variation of gravity with depth 
in the ocean given by 

g(d) ≅ g0[1+ γd] (3)  

where g0 is the surface gravity from the ERS 80 gravity model, γ = 2.26 x 
10− 7 1/m, and d is the depth below the surface. Appendix B contains 
derivations of the gravity gradient. 

To evaluate Eqn 2, we prefer to express gravity as a function of 
pressure rather than depth. Following McDougal (2010) and using the 
linear approximation of 0.98 m/dbar (i.e., assuming a constant density 
of 1.035 kg/m3 and g = 9.7963 m/s2, both average values for the ocean), 
we can write: 

g(∅, d)= gGRS80(∅ )[1+ γp] (4)  

where the gGRS80 is given in equation g2 and is γ is 2.22 x 10− 7 1/dbar. 
Because the impact of the gravity gradient on the calculated depth is 

small (though not negligible), using a linear pressure to depth rela-
tionship in figuring the gravity results in a small residual error - an error 
in γ of one per cent yields a depth error of 14 cm over 11 km. 

3.3.1. Gravity anomalies and estimation of topographic effects 
The non-uniform mass distribution of the earth, including bathym-

etry or topography, causes local differences in gravity from the uniform 
GRS 80 model, which are referred to as gravity and gravity gradient 
anomalies. Sandwell et al. (2014) determined these anomalies over the 
world’s oceans and the model is available as a base layer in GeoMapApp. 
At the Challenger Deep dive site, the surface gravity anomaly is − 320.85 
mGal (Sandwell et al., 2014). Even this relatively large gravity anomaly 
is only 0.033% of the GRS 80 gravity at this location. However, in nearly 
11 km of water, this anomaly alone results in a change in the depth (by 
Eqn 2) of 3.6 m. Here, the gravity anomaly corrected depth is deeper; 
with less gravity it takes a taller column of water to result in the same 
pressure. The magnitude of this correction is nearly half of that from the 
steric effects of temperature and salinity and cannot be ignored in a 
precision depth calculation in the deep ocean. 

However, it was not obvious to what extent these surface anomalies 
captured the effects of the topography and density variations in our 
study area or how to assign uncertainties to this correction. The gravity 
model incorporated in the TEOS-10 and UNESCO formulations assumes 
a homogenous and bottomless ocean with a surface gravity given by the 
GRS 80 model. Our first idea was to use the in-situ seawater density. We 
show this has a small effect. More significantly, at the base of the 
Challenger Deep, a submersible is nearly 7 km below the average depth 
of the ocean. In the sense of a model of the earth comprised of shells of 
constant density, the submersible is beneath more rock than water. 
Ideally, we would downward propagate the surface gravity using the 
bathymetry and a model of the density of the earth to constrain the 
solution. Such downward continuation problems are generally ill- 
conditioned (Sebera et al., 2015), and global-scale calulations are 
difficult (see Hirt et al., 2013 for an example of the terrestrial case). To 
better understand the possible impact of the trench on the gravity field, 
we constructed a few simple models of the Challenger Deep where we 
could solve the gravitational field analytically:  

1. Missing slab: we assumed the GRS 80 model described an earth with 
a uniform 4 km deep ocean and calculated the gravitational effect of 
a missing 7 km thick slab of rock (of density 2,700 kg/m3).  

2. Cylinder: we modeled the Challenger Deep as vertical cylinder 
centered on the dive site with a radius of 30 km and depth of 7 km.  

3. Bore-hole: we again started with the GRS 80 model, but assumed that 
we bored into rock at 4 km with a negligibly small bore-hole from a 
gravity perspective. 

The missing slab and bore-hole models should provide boundaries of 
the actual topographical effect of the Challenger Deep and the cylinder 
model should provide a better, though still crude model. We calculated 
the gravity, the gravity gradient, and the resultant change in calculated 
pressure derived depth for each of these models over the depth of 
Challenger Deep and compared the solution to the simple approach of 
using the surface gravity and gravity gradient anomaly as constants over 
the full depth of the ocean. In each case the depths calculated using the 
modeled gravity are greater than if using GRS 80 and Eqn 4 for depth 
dependence (Fig. 4). 

At the depths of the Challenger Deep, the difference between a 
pressure-derived depth corrected with the missing slab model and the 
borehole model is 1.9 m. On the assumption that the actual gravity is 
somewhere between these two extremes, this serves as a reasonable 
outer bound on the uncertainty of the gravity correction. Recognizing 
that the surface gravity anomaly and surface gradient anomalies contain 
information about the topographic correction, the difference between 
the actual gravity and gravity modeled using the surface gravity and 
gravity gradient anomalies is likely substantially less than 1.9 m. The 
difference in depth calculated using the cylinder model and the surface 
anomalies is 0.4 m at full depth. Assuming that the actual topographic 
effect is likely somewhere in the middle of the two boundary cases 
(missing slab and borehole), we estimate the depth uncertainty due to 
residual terrain corrections as ±0.5 m. Without measuring the gravity 
directly or doing far more sophisticated modeling of the terrain effect, it 
is not possible to better constrain this estimate. The difference in depth 
accounting for the gravity effect of the in-situ water density is 0.13 m. 
Because the uncertainty in the topographic gravity correction is much 
larger than the total magnitude of the in-situ water density correction, 
we did not account for the in-situ water density when correcting for 
gravity. We did use the surface gravity anomaly and surface gravity 
gradient anomaly to correct the average gravity over the column. 

3.3.2. Correction of depth for surface gravity anomaly and gravity gradient 
anomaly 

Given Eg. 2, we can correct a depth for a different gravity field by 
multiplying by the GRS 80 average gravity over the column and dividing 
by the corrected average gravity over the column. For a gravity model of 
form of Eqn 3, the average gravity over the column is: 

g(∅, d)= gGRS80(∅ )

(

1+
γH
2

)

(5) 

Correcting a depth, H, that had been calculated using the standard 
GRS 80 model to account for a gravity anomaly, A, and gravity gradient 
anomaly, B, is: 

Hc =H
gGRS80(∅)

(

1 + γH
2

)

gc(∅)

(

1 +
γcH

2

) gc(∅ ) = gGRS80(∅ ) + A γc = γ +
B
gc

(6) 

Strictly speaking, the H in the denominator of the right-hand side of 
Eqn 6 should be Hc, but the effect of replacing it with H as shown here is 
negligible for physically reasonable values of the gravity and gravity 
gradient anomalies. 
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3.4. Reduction to datum, atmospheric pressure and tides 

So far, this analysis has focused on deriving an instantaneous depth 
from an observed pressure, i.e., how much water is over the top of a 
pressure sensor. For our work, we want to know depths relative to a 
stable datum such as mean sea level (MSL). For this we need to model or 
measure where the surface of the sea is relative to this datum and look at 
two drivers of the instantaneous sea level, atmospheric loading and 
tidally driven water-levels. We neglect wind driven surface waves or 
swell. By linear wave theory, the pressure variations of even very large 
surface waves would be indistinguishable at hadal depths. 

3.4.1. Water-level correction 
In the mapping community, tides refer to the harmonic aspects of the 

level of the ocean, while water-levels captures the tides plus any non-tidal 
changes to the water level such as from wind stress or atmospheric 
loading. We used a water-level approach and a non-harmonic compar-
ison method (Parker, 2007) to correct the instantaneous water level at 
the time of the measurement to a stable datum. Here, we choose 
mean-sea level (MSL) as the reference datum. We used the nearly 60-day 
long deployment of a hydrophone and pressure sensor to the Challenger 

Deep by NOAA’s Pacific Marine Environmental Laboratory in 2015 
(Dziak et al., 2017) to determine a water-level model for the Challenger 
Deep referenced to the National Water Level Observation Network 
(NWLON) reference station at Apra Harbor in Guam. The water-level 
signal observed at Guam is similar in character to the variations seen 
in the 2015 Challenger Deep pressure records (Fig. 5) with the addition 
of substantial drift in the pressure record (~3 m over 50 days). 
Observing that there were not significant phase offsets between the 
water-level and pressure derived depths, we calculated a 6-min average 
for the pressure measurements (to match the water-level gauge), dif-
ferenced the two to estimate drift, and then fit a model to this difference. 
We modeled this drift using the same equation used by Polster et al. 
(2009), acknowledging that the sensors addressed in that work, Paros-
cientific Digiquarz, are different from the strain gauges used here. This 
drift equation is: 

P=Ae− Bt + Ct + D (7) 

With fit values shown in Table 2. 
The difference and the fit are shown in the right panel of Fig. 5. We 

also modeled the drift with a third order polynomial, but the perfor-
mance of the exponential equation was clearly superior. 

Fig. 4. Difference from GRS 80 of modeled gravity by depth (top left), gravity gradient (bottom left) and the resultant change in calculated depth from pressure 
(right) for the simple models (missing slab, cylinder, and borehole into rock) to correct for topography of the Challenger Deep. Surface gravity anomaly and surface 
gravity gradient anomaly used as constants is shown in heavy black line and gravity correction for the in-situ water density is shown in red. 

Fig. 5. Six-minute average data from pressure derived depth and water level gauge (left). Difference between pressure derived depth and water-level from gauge 
(right) with fitted distributions. The exponential based model of Eqn 7 (shown in solid orange) is used here. 
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After correcting for the modeled sensor drift, we calculated an 
amplitude correction of 120% and no phase offset between the Guam 
gauge and Challenger Deep using the Tide-by-Tide method (Parker, 
2007). That is, compared to the reference gauge in Guam, the amplitude 
of the tide signal at the Challenger Deep has a 20% larger amplitude but 
occurs at same time. Following correction for drift and amplitude 
adjustment, there was an 8 cm (1-sigma) residual error in applying the 
Guam gauge data to the Challenger Deep for the 2015 pressure data 
(Fig. 6). One could use more sophisticated water-level models to in-
crease the precision of the water-level term. However, for this work, the 
residual error in the water level term is small compared to other sources 
of error. 

Using the established MSL datum at Guam to develop the water-level 
correctors at the Challenger Deeo gives us a model that includes any 
geoid undulations between the gauge and our site but that does not 
capture any variation in the topography of the sea-surface (i.e., the 
separation between MSL and the geoid) between the two locations. 
Future expeditions could use either a ship or a buoy to directly position 
the sea-surface relative to a datum such as the WGS84 ellipsoid using 
GNSS methods. In such a case, the datum offset between ellipsoid and 
MSL that accounts for both the geoid and topography of the sea surface 
at the site of the measurement is required. For this mission, we did not 
have high-precision vertical GNSS positions from the ship or a validated 
datum offset model. 

We neglect solid earth tides in this analysis, implicitly assuming that 
tidal deformation of the earth at the reference station in Guam is the 
same as at the dive site. For very high precision and in cases where the 
sea surface is positioned by either a GNSS buoy or satellite altimetry, 
solid earth tides may need to be considered. 

We subtracted the modeled water-levels at the dive site from all 
calculated depths to reference to the mean sea level datum. Because our 
water level model is based on a nearby reference station, the water levels 
include tidal factors as well as non-tidal factors such as wind stress and 

atmospheric loading. 

3.4.2. Atmospheric pressure 
Increased atmospheric pressure tends to depress the local sea level in 

an effect known as the inverse barometer effect (Wunch and Stammer, 
1997). Under idealized inverse barometer conditions, changes in at-
mospheric pressure would not be observable in the bottom pressure; the 
pressure from the water column would be reduced by an amount equal 
to the increase in the atmospheric pressure. It is thus tempting to neglect 
atmospheric pressure when computing depths from measured pressure. 
While atmospheric pressure clearly has an effect on the instantaneous 
actual depth of a pressure sensor, under inverse barometer conditions it 
would not affect the depth calculated from the sensor relative to some 
stable datum like MSL. We include atmospheric pressure effects here for 
two reasons: significant departures from inverse barometer response 
have been observed - particularly in the tropics (Mathers and Wood-
worth, 2004); and the Gibbs Seawater (GSW) equations are strictly valid 
only for standard atmospheric pressure. 

The GSW calculations are based on standard reference sea level 
pressure of 101,325 Pa. We subtract the observed barometric pressure 
from the pressure records at all depths. This gives us a more accurate 
calculation of the instantaneous height of the water-column above the 
sensor. The effect of the perturbations of atmospheric pressure on the 
water surface relative to MSL are accounted for in our case by the water- 
level correctors and associated datum realization. Including the atmo-
spheric correction in the water-level based datum reduction method 
may be problematic if the reference station is far relative to typical at-
mospheric pressure gradients or if the departure from the inverse 
barometer effect (or the transfer function between atmospheric pressure 
and water-level) were different between the survey location and the 
controlling gauge. 

This correction of water levels for atmospheric loading would also 
not be applied under the inverse barometer assumption if the water-level 
corrections were done only with a harmonic tide model but should 
generally be applied if ellipsoid based positioning (e.g., GNSS) of the 
water surface were used. To expand on this, consider a location in the 
ocean that behaves as a perfect inverse barometer. A pressure sensor in a 
fixed location relative to MSL would not see any pressure change under a 
change in atmospheric loading. A purely harmonic model of tides does 
not include any short-term pressure variations effects, so atmospheric 
pressure can safely be neglected under these conditions. If the instan-
taneous sea-surface is measured relative to a stable datum (e.g., by a 
GNSS buoy) and the sea surface responds to atmospheric loading, the 
apparently fixed pressure-derived depth must be corrected for changes 
in atmospheric pressure such that the sum of the pressure-derived depth 
and the distance of the water surface to the datum remains constant. 

If a given location in the ocean does not behave in accordance with 
the inverse barometer effect, application of harmonic tide models will 
generally have some error from the atmospheric pressure. Full correc-
tion of the atmospheric pressure effect is equivalent to assuming there is 
no effect on the water surface from atmospheric loading, while no 
correction is equivalent to assuming an ideal inverse barometer effect. 
When the actual instantaneous water level is positioned using GNSS or a 
nearby water level gauge, atmospheric pressure should be removed from 
the pressure record, and whatever effect that loading has on the water 
surface will be captured by the water level measurement. 

During the dives, the variation of atmospheric pressure from stan-
dard atmospheric pressure was small (~0.04 dbar). However, this will 
not always be the case. For all of 2015 at Guam, there were nine in-
stances of deviation larger than 0.10 dbar and one larger than 0.25 dbar. 
The largest are associated with passing tropical cyclones. If uncorrected, 
this surface pressure variation will couple directly to depth errors where 
we can approximate the depth error in meters as the pressure variation 
in dbar, subject to the inverse barometer discussion above. For this 
work, the atmospheric contribution to the overall error is small, but in 
shallow water the atmospheric pressure correction may be a substantial 

Table 2 
Pressure sensor drift parameters for 2015 deployment by Dziak et al. We used 
this deployment to determine water-level corrections for the Challenger Deep. 
Fit from Eqn 7.  

Parameter Value Unit 

A 1.760 m 
B 0.255 1/day 
C − 0.017 m/day 
D − 2.740 m  

Fig. 6. Pressure derived depth of 2015 hydrophone deployment with modeled 
drift removed compared to Guam water levels with 1.20 amplitude correction. 
RMS of the residuals is 8 cm (1-sigma). 
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fraction of the total error. 

4. Results 

4.1. Measured CTD profiles 

During this expedition, there were 18 lander deployments over 12 
operational days spanning June 6 to June 26, 2020. The submersible 
was deployed on six of these days. Of the lander deployments, we 
rejected six CTD profiles that had unrealistic absolute salinity values 
greater than 40. Using these measured profiles and an assuming a 
reference pressure of 11,260 dbar (corresponding to a depth of 
approximately 10,930 m), we calculated the depth using each profile. 
The standard deviation of the calculated depths was 17 cm. This is not 
substantially larger than our expected measurement uncertainty of 11 
cm which may indicate that we did not observe any variability other 
than measurement noise. Accordingly, we used a single profile from 
June 26 to process all dives. 

4.2. Dive results 

Profiles of the seafloor for the six dives are shown in Fig. 7. The dives 
were planned as transects over the deepest areas of each basin as iden-
tified by surface mapping. Aside from the location of the submersible 
descent, ascent, and lander tie points (based on the deployment location 
of the lander), there was no horizontal positioning of the submersible. 
The x-axis is time in seconds (UNIX POSIX seconds in UTC). The hori-
zontal velocity of the submersible along the seabed changed with time 
(possibly even reversing directions occasionally), so this scale cannot be 
unambiguously tied to a distance metric. We use the mapping results 
from Bongiovanni et al. (2021) on the accompanying geographic plots 
(Fig. 8) to generally locate the dive profiles. We show the submersible 
surface deployment position, lander deployment position, and approx-
imate path the submersible travelled on the seafloor. During the June 12 
dive, the submersible came within 150 m of the lander but did not 
actually co-locate with it. We have used the closest point of approach as 
a tie-point for this dive. 

4.3. Uncertainty analysis 

The spread in the RBR pressure gauges indicates that the operational 
accuracy of these instruments is lower than the pre-deployment cali-
bration suggested but well within the specified accuracy of the in-
struments. We use the standard deviation of the average difference of 
the RBR gauges when deployed together to estimate 1-sigma uncertainty 
of 2 m from the pressure gauges. The residual surface offset was well less 
than this for all dives. The unaccounted-for drifts in the instruments add 
up to an additional meter of uncertainty from the pressure measurement 
when far in time from a tie point. Though this is not a random effect, we 
account for it by increasing the pressure sensor uncertainty to 3 m. The 
next largest source of uncertainty is the gravity correction, which we 
have estimated at ±0.5 m. This is admittedly a bit of a guess, though we 
showed in section 3.3.2, Gravity at Depth, that it should be considerably 
smaller than 2 m by considering bounding cases for the gravity model. 
The CTD measurement uncertainty is 0.11 m and the measured variation 
in the water column is 0.17 m, though these last two figures may be 
different manifestations of the same root uncertainty. Finally, water 
level uncertainty is 0.08 m and atmospheric pressure uncertainty is 
negligible in this case. Thus, the root-mean square 1-sigma uncertainty 
is 3 m (6 m at 95% C.I.) and is dominated by the pressure sensor un-
certainty (Table 3). 

4.4. Deepest depth 

Each dive was planned over the deepest section of the three basins 
using the mapping data of Bongiovanni et al. (2021). With the exception 

of the June 26 dive, we used a RBR pressure gauge on a lander to 
establish the depth of the seafloor at the lander relative to mean sea level 
(MSL). We tied the seafloor profile from the submersible altimeter into 
this datum using the recorded time of rendezvous between the sub-
mersible and lander. Much like a land surveyor tying into a local 
benchmark, this allowed us to transfer the vertical control from the 
static lander deployment to the vehicle and subsequently to the altim-
eter records along the entire profile. On June 26, we used a RBR sensor 
on the vehicle to vertically control the profile as described in section 2.2. 
The submersible traveled along the transect at variable heights of a few 
meters above the seafloor, but using the altimeter combined with the 
onboard pressure sensors and the established vertical control, we are 
able to reference this seafloor profile to MSL. 

The deepest seafloor depths were found in the south-east portion of 
the eastern basin. The June 7 and 12 dives showed a maximum depth of 
10,932 m though neither crossed the deepest area indicated by surface 
mapping from Bongiovanni et al. (2021). The June 14 and June 26 dives 
did cross the deepest area of the eastern basin indicated by surface 
mapping. The maximum depth of the June 14 dive 10,936 m. This was 
observed approximately 30 min after the lander tie-point, so it is likely 
this measurement is biased deep due to CTD pressure drift by ~ 0.25 m. 
On the June 26 dive, the maximum depth was 10,934 m. Due to the 
unaccounted for RBR drift for this dive, this depth is likely biased up to a 
meter shallow. 

The one dive in the western basin, on June 20, observed a maximum 
depth of 10,933 m. This depth was observed almost an hour after the tie- 
point, so may be biased up to 0.5 m deep by the CTD pressure sensor 
drift. The deepest point was along the northern extent of the basin 
immediately adjacent to the northern wall of the trench. The one dive in 
the central basin observed a maximum depth of 10,922 m. This was in 
the vicinity of the deepest area determined by surface mapping. 

Based on these results, we estimate the maximum depth of the 
Challenger Deep to be located in the eastern basin at approximate po-
sition 11◦ 22.4′N, 142◦ 35.6′ E and a depth of 10,935 ± 3 m at 1-sigma 
(±6 m at 95% C.I). 

5. Discussion 

5.1. Comparison with other reported depths 

As for the location of the deepest depth being in the eastern basin, 
this study agrees with the deepest location determined by Nakanishi and 
Hashimoto (2011) using multibeam sonar. Nakanishi and Hashimoto 
(2011) estimated a depth uncertainty of 5 m (at 95% C.I.) from the in-
ternal consistency of a number of largely contemporaneous soundings. 
Because their estimate takes no account of the common sources of error 
in these sounding (e.g., the sound speed profile), the uncertainty is 
almost certainly too low. The more rigorous estimate of depth uncer-
tainty by Gardner et al. (2014) of 25 m (at 95% C.I.) for a similar system 
is probably more representative for acoustic work from surface ships. 
Using this larger uncertainty figure, our depth results are consistent with 
Nakanishi and Hashimoto’s (2011) reported depth of 10,920 m. The 
deepest depth we calculated in the western basin was very nearly as 
deep as the eastern basin, and our results are consistent with Van Haren 
et al.’s (2017) measurement there of 10,925 ± 12 m (at 95% C.I.). Our 
results are also consistent with the deepest depth of 10,924 ± 15 m (at 
95% C.I.) measured by Bongiovanni et al. (2021) in the eastern basin. 
We do not agree with Garner et al.’s (2014) estimate for the western 
basin (10,984 ± 25 m at 95% C.I.), the Loranger et al. (2021) estimate 
for the central basin of 10,983 ± 12 m (at 95% C.I.), or the Taira et al. 
(2005) estimate for the eastern basin (10,989 m with no reported un-
certainty). This study had only one dive in the western and central ba-
sins, and the dive profiles do not cross the location of these deeper depth 
estimates in those basins. However, it seems unlikely that the either 
basin contains an undetected depression nearly 60 m deep. 

Comparing to other submersible-based observations, Gallo et al. 
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Fig. 7. Vehicle depth and seafloor profiles. Where the submersible approaches the seabed, thruster wash or penetration into the sediment shows as short vertical 
artifacts in the bottom profile. A: June 7, Eastern Basin. The segment of the profile from − 3000 to − 1500 s is the submersible stationary on the seafloor. The drift in 
the CTD controlled depth is apparent. During this segment, the altimeter is reporting weak returns from ~1 m below the surface. Maximum seafloor depth 10,932 m. 
B: June 12, Eastern Basin. Maximum seafloor depth 10,932 m. C: June 14, Eastern Basin. Maximum seafloor depth 10,936 m. D: June 20, Western Basin. Maximum 
seafloor depth 10,933 m. E: June 22, Central Basin. Note the different vertical scale in the profile. Maximum seafloor depth: 10,922 m. F: June 24 June 26, Eastern 
Basin. This dive was vertically controlled with the RBR sensors mounted on the vehicle rather than establishing a reference datum with the sensor on the lander. 
Maximum seafloor depth: 10,934 m. 
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Fig. 8. Approximate tracks of dive profiles in eastern (A), central (B), and western (C) basins. Circles indicate decent location and triangle show rendezvous with 
lander. Background bathymetry from Bongiovanni et al. (2021). 
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(2015) reported a maximum depth of 10,908 ± 3 m (presumably at 
1-sigma) for the Deepsea Challenger in the eastern basin and 10,918 ± 3 
m for an un-crewed lander in the central basin. The reported position of 
the Deepsea Challenger dive is consistent with the position of the deepest 
position found with this study, but the depth is 27 m shallower. It is 
possible Gallo et al. did not correct for the dynamic height anomaly 
when applying the UNESCO equation, which would not be unusual in 
general oceanographic practice. This would account for 8 m of the dif-
ference, and our additional correction for gravity would account for 
another 4 m, leaving a difference of 15 m unexplained. Based on the dive 
location and Gallo et al.‘s description of the transect along the seafloor, it 
seems unlikely that the vehicle was not in the basin proper. 

Trieste dove in the western basin, but positioning was relatively crude 
by modern standards. Prior to the dive, the deepest location was soun-
ded by a support ship using TNT and marked with flares (Piccard and 
Dietz, 1961). Additionally, overall positioning of the mission in a global 
frame would have likely used celestial navigation. Depending on the 
latest good celestial fix, the position uncertainty of the surface ships 
could have been many km. The position uncertainty was not discussed 
by Piccard and Dietz. Given the position uncertainty as well as the fact 
that the Trieste did not maneuver along the seafloor, the results here are 
consistent with the Piccard and Dietz reported depth of 10,910 m. 

5.2. Could it be the sound speed? 

Van Haren (2017) suggested that the discrepancies between their 
results and other acoustic measurements (e.g., Gardner et al., 2014, 
Taira et al., 2005) were due to differences in sound speed profiles. In a 
similar vein, Taira et al. (2005) corrected the reported 1957 depth from 
the Vityaz from 11,035 m to 10,983 m by backing out the original sound 
speed correction and applying one from their measured CTD profile. We 
compare sound speed profiles as well as the sound speed equations used 
in this section. We were able to obtain the profiles used by Taira et al. 
(2005), Gardner et al. (2014), van Haren et al. (2017), and Loranger 
et al. (2021). We found that the profiles and differences in the sound 
speed equations used are insufficient to account for the differences in the 
reported maximum depth. 

The sound speed profile is a critical part of any acoustic measure-
ment. For multibeam systems with oblique ray paths through the water 
column, refraction is a concern and generally a ray-tracing correction is 
needed to correctly position the sounding on the seafloor (Beaudoin 
et al., 2009). However, within an angle of ±45◦ from nadir, the greatest 
vertical depth uncertainty due to uncertainty in the sound speed profile 
is at nadir. For this analysis, we assume that the reported greatest depths 
came from nadir or near nadir soundings and focus on the harmonic 
sound speed rather than ray-tracing approaches. Applying an average 
sound speed that is faster than what is physically in the water column 
will yield a calculated depth sounding that is deeper than the actual 
depth. 

Taira et al. (2005) used contemporaneous CTD profiles to correct the 
readout depth of the sounder. They did not specify the sound speed 
equation used, but presumably used Chen-Millero (Millero et al., 1980), 

consistent with the UNESCO equation they used to calculate density. We 
were unable to obtain the profile used by Nakanishi and Hashimoto 
(2011). Gardner et al. (2014) measured temperature to depth of 800 m 
to 1000 m with an expendable bathythermograph (XBT) and used a U.S. 
Naval Oceanographic Office database for salinity values and to extend 
the measured profile to the seabed. They used the Chen-Millero (Millero 
et al., 1980) sound speed equation (A. Armstrong, personal communi-
cation, June 24, 2020). Van Haren et al. (2017) used a contemporaneous 
profile to 8,000 m, measured with a CTD lowered on a wire rope, and 
used the Del Grosso equation (Del Grosso, 1974) to calculate sound 
speed. Loranger et al. (2021) estimated a depth using a contempora-
neous profile made with a free-fall profiler and the Del Grosso equation. 

For comparison, we calculated the sound speed profile for each CTD 
deployed on a lander during this expedition using the TEOS-10 sound 
speed formula (Table 4). We also calculated the difference in depth using 
the Lander CTD as a reference and a reference depth of 10,934 m. That 
is, we calculate what the reported depth difference would be for each 
profile assuming the true depth were 10,934 m and the true harmonic 
mean were 1,554.1 m/s. Gardner et al. (2014) used the fastest profile, 
but the profile could account for up to 13 m of the difference at this 
depth (Table 4). Recall that the depth from Gardner et al. (2014) was 
50–60 m deeper than the estimate of van Haren et al. (2017) or this 
paper. For a representative profile at the Challenger Deep, the Del 
Grosso and TEOS-10 formula are equivalent and Chen-Millero is slightly 
faster, accounting for a 5-m difference at this depth (Table 5). 

Based on this analysis, neither the sound speed profiles used nor the 
sound speed equation explain the difference in depth (approximately 50 
m) between the depths in the vicinity of 10,980 m reported by Taira 
et al. (2005), Gardner et al. (2014), and Loranger et al. (2021) and those 
in the vicinity of 10,920 reported by Nakanishi and Hashimoto (2011), 
van Haren et al. (2017), and Bongiovanni et al. (2021). 

It is possible that the sound speed of the deep ocean is incorrect in all 
the models, but this would not explain the discrepancy between acoustic 
mapping missions. It is also possible that the density estimated from the 
TEOS-10 model used here (and the UNESCO equation that predated it) is 
incorrect in the deep ocean, which would skew all pressure-derived re-
sults. We think it is more plausible that the results in the vicinity of 
10,980 reflect unknown instrument configuration inaccuracies, noise, or 
other factors. Non-nadir returns would seem to have a possibility of 
biasing the results of the implosion-echo method used by Loranger et al. 
(2021), particularly in light of the observation that their reported po-
sition is not coincident with the deepest position of any of the basins 
indicated by surface mapping. 

6. Future work 

The pressure sensor used here dominated our overall uncertainty. 
While 3 m of uncertainty in nearly 11 km is remarkable, more accurate 
pressure sensors are available or under development. Controlling or 

Table 3 
Contributions to depth estimate and associated uncertainty.   

Depth Contribution 
(m) 

Uncertainty 
(m) 

pressure sensor and correction for standard 
ocean 

10,922 3 

CTD measurement and correction for 
dynamic height anomaly 

8.7 0.11 

gravity and gravity gradient correction 4.2 0.5 
CTD temporal variability na 0.17 
water levels <0.5 0.08 
atmospheric loading <0.1 0 
Total 10,935 3 (RMS)  

Table 4 
TEOS-10 Harmonic sound speed and impact on calculated depth using a refer-
ence depth of 10,930 m and the profiles from this paper as a reference.  

Mission Number of 
Profiles 

Harmonic 
Mean (m/s) 

Standard 
Deviation (m/ 
s) 

Depth 
Difference 
(m) 

This paper 18 1,554.1 0.14 0 
Taira et al. 

(2005) 
3 1,552.9 0.24 − 8 

Gardner et al. 
(2014) 

5 1,555.8 0.5 13 

van Haren 
et al. 
(2017) 

1 1,553.3 N/A − 5 

Loranger 
et al. 
(2021) 

1 1,552.9 N/A − 8  
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correcting for instrument drift will be critical. The method used here of 
establishing depths at fixed sites and then tying in the submersible to 
those depths was useful to determine instrument drift and validate the 
application of other correctors. With improvements to the pressure 
measurement, gravity will come to dominate the error. For absolute 
accuracies of under a meter in the deep trenches, we will need more 
sophisticated modeling of the downward propagation of gravity at the 
measurement location. Ideally, we would augment a gravity modeling 
effort with direct measurements using a gravimeter. Unlike many in-
struments deployed in the sea, a gravimeter could make the required 
measurements while fully within the confines of a pressure housing. To 
achieve sub-meter accuracies, we will also need to abandon the 
approximation of using pressure in the gravity equation and directly 
calculate the average gravity over the column to figure the depth from 
the integrated dynamic height. This effort may not be required for areas 
with relatively benign gravity variations, such as the abyssal plains. 
Following gravity, measurement of the water properties could be 
improved. For hadal depths, we found the pressure sensor of the CTD 
sensor to be limiting. Aside from improving the CTD pressure sensor, 
another approach might be to couple measurements made in the upper 
portion of the column with a CTD rated to only a few hundred meters 
with mid and full ocean depth profiles. Because the pressure sensor 
accuracy is a portion of the full scale, the combined profile would be 
more accurate than a single, full-depth profile. These shallow profiles 
would also be much easier to take and might better capture any vari-
ability near the surface. For this work, we were fortunate to have a long- 
term pressure sensor deployment to reference water levels. Generally, 
we will need either modeled water levels at the measurement location or 

we will need to directly position the water surface (e.g., with a GNSS 
buoy) and then apply a datum model to bring measurements to our 
datum of choice. With these improvements, pressure-based depth mea-
surements in any part of the world’s ocean at sub-meter absolute ac-
curacy seem achievable. 

The profiles of the seafloor at the bottom of the ocean shown in this 
report are tantalizing. It is clearly not a flat and featureless terrain and 
complete bathymetric coverage at meter or submeter horizontal reso-
lution would undoubtedly be of interest. Mapping these depths with 
instruments on surface ships is limited to horizontal resolutions of 
hundreds of meters. A higher-resolution mapping mission would require 
integration of a hadal depth-rated multibeam mapping system into a 
deep submergence vehicle. This would be non-trivial. A deep mapping 
effort could leverage the approaches in this paper for vertical control. 

We do think that the transects across the basins shown in this report, 
controlled by direct pressure observations and accounting for steric, 
gravity, and water-level effects, are the most comprehensive, precise, 
and accurate estimates of the depth of the Challenger Deep, and thus the 
maximum depth of the ocean, to date. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We are grateful to Chris Meinig of NOAAs’ Pacific Marine Environ-
mental Laboratory for many useful discussions on deep sea pressure 
measurements and Walter H.F. Smith of NOAA’s Laboratory for Satellite 
Altimetry for many long and fruitful exchanges on gravity in the ocean. 
The team at Caladan Oceanic, specifically Victor Vescovo, Cassie Bon-
giovanni, and Tim Macdonald, very generously shared information and 
data, and fully supported following the science in this effort. David 
Wolcott at NOAA’s Center for Operational Oceanographic Products and 
Services helpfully performed the tide-by-tide comparison.  

Appendix A. Pressure to Depth Calculations 

A.1 The Hydrostatic Equation 

The application of the hydrostatic equation here is not new, but because of the different implementations of a reference pressure level, different 
definitions of heights in the literature, and other considerations, it is worth building the equations from basic principles. This derivation largely follows 
that in the TEOS-10 manual (TEOS-10; IOC, SCOR and IAPSO, 2010) with some clarification. 

Consider a small box of water of cross-sectional area A, height Δh, and density ρ in the earth’s gravity g. The gravitational force on this box, its 
weight, is: 

F =mg = AΔhρg (A.1) 

The weight of this box then exerts a pressure, a force per unit area on the bottom surface, where the increase in pressure from the top of the box to 
the bottom is: 

Δp=
F
A
=

AΔhρg
A

= ρgΔh (A.2) 

Considering a stack of such boxes forming a column of water, the total pressure of the column is a sum across the boxes. If the density and gravity of 
the column can be considered constant, Eqn A.2 is sufficient to calculate depth from pressure, and this is how typical shallow water depth gauges, such 
as those used by scuba divers, work. For precision work, we need to consider that density and gravity vary along the water column. Because density is a 
function of pressure and gravity is in general a function of height, this equation is conveniently rearranged to: 

1
ρ Δp= gΔh (A.3) 

The inverse of the density is known as the specific volume, α. Letting the increments go to infinitesimal differentials and integrating along the 
column gives: 

Table 5 
Effect of different sound speed equations. Depth difference calculated depth 
using a reference depth of 10,930 m and the profiles from this paper as a 
reference.  

Formula Harmonic Mean (m/s) Depth Difference (m) 

TEOS-10 1554.1 0 
Del Grosso 1554.1 0 
Chen-Millero 1554.8 +5  
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∫P

0

α dp=
∫H

0

g dh (A.4) 

The density and specific volume of seawater is a function of pressure, temperature, and dissolved minerals, predominantly salts. The specific 
volume of seawater is often written as the sum of the specific volume of the standard ocean (seawater at temperature of 0 ◦C and reference salinity of 
35 on the Practical Salinity Scale PSS-78) and the specific volume anomaly, δ. 

α= α0(T = 0, S= 35, p) + δ(T, S,P) (A.5) 

This is done so that the first term, α0, is a function only of pressure while the density effects of temperature and salinity are restricted to the second 
term, δ. 

∫P

0

a0 dp +

∫p

0

δ dp =

∫H

0

g dh (A.6) 

These integrals yield potentials typically referred to in both the oceanographic and geodetic communities as a dynamic height. The integral of the 
specific volume anomaly, the second term of the left side of Eqn A.6, is called the dynamic height anomaly or the geopotential anomaly (IOC, SCOR and 
IAPSO, 2010). The units of dynamic height and dynamic height anomaly are m2/s2. The right side of Eqn A.6 is equivalent to an average gravity over 
the column multiplied by the height. 

∫P

0

a0 dp +

∫p

0

δ dp = gH , g =
1
H

∫H

0

g dh (A.7) 

Conversely, the dynamic height divided by the average gravity gives the height (or depth) of the column. This is the relationship we use to calculate 
depths from observed pressures. We use depth as a positive quantity throughout this report. 
∫ P

0 a0dp +
∫ P

0 δ dp
g

=H (A.8)  

A.2 Pressure to Depth, A Comparison of Linear Models, the UNESCO equation, and TEOS-10 

One convenient and common approximation to derive depth from observed pressure is to use the pressure in decibar (dbar) as equivalent to the 
depth in meters. One bar is defined as 105 Pa, so 1 dbar is equal to 104 Pa. Treating one dbar as equal to a depth of 1 m is equivalent to approximating g 
= 10 m/s2, and ρ = 1 g/cm3, or g = 9.81 m/s2 and ρ = 1020 kg/m3. For some applications in shallow seawater, this approximation is often accurate 
enough, but yields errors of 50 m (too deep) in 4 km of sea water and 300 m (again too deep) at 11 km (Figure A1, left panel). The compressibility of 
seawater is the dominant part of this discrepancy. A formulation of Eqn A.8 by Saunders and Fofonoff (1976) and later refitted by Fofonoff and Millard 
(1983) to the 1980 Equation of State of Seawater (EOS-80) is commonly used in oceanography and is typically known as the “UNESCO pressure to 
depth” conversion or simply, the “UNESCO equation”. Many authors (e.g. Diez, 2017; IOC, SCOR and IAPSO, 2010) purposely neglect the dynamic 
height anomaly when using the UNESCO equation. This is equivalent to assuming the water column is made up of standard ocean (seawater at 
temperature of 0 ◦C and salinity of 35 on the Practical Salinity Scale PSS-78), in effect discarding any information on the temperature or salinity of the 
column. This assumption of a standard ocean is not as egregious as it may seem, and results in a contribution to the depth error of less than 10 m even 
for the deepest depths considered here. 

The international Oceanographic Commission approved replacing EOS-80 with a new International Thermodynamic Equation of State of Seawater 
2010) (TEOS-10) in 2009. We use the TESO-10 model (IOC, SCOR and IAPSO, 2010) and the associated Gibbs Seawater Toolbox (GSW) (McDougall 
and Barker, 2011) throughout this report. The difference in pressure to depth determinations between TEOS-10 and UNESCO equation for standard 
seawater at latitude 11 N is shown in the right panel of Figure A1. The difference between the two equations for the standard ocean less than 10 cm at 
all depths.

Fig. A1. Difference between TEOS-10 and ‘decibar-as-meter’ (left) and UNESCO equation (right).  

A typical profile for conditions at the Challenger Deep is shown in Figure A2. 
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Fig. A2. In-situ density (left), in-situ temperature (middle), and salinity (right) for a typical CTD profile for this project. This is from a June 26 lander deployment.  

Using the profile shown in figure A2, we compared depths calculated with the measured salinity and temperature against using the standard ocean 
for all depths (Figure A3). Depths calculated using the dynamic height anomaly from the CTD profile are 8 m deeper at 10,000 m than using the 
standard ocean (i.e., ignoring the dynamic height anomaly) because the ocean at this location is less dense than the standard ocean.

Fig. A3. (left) Difference between TEOS-10 depth calculations using full CTD profile (i.e., applying dynamic height anomaly) and TEOS-10 calculations assuming 
standard ocean (i.e., neglecting dynamic height anomaly), UNESCO standard ocean, and TEOS-10 depth with bottom salinity and temperature assumed for 
full profile. 

For any particular location, the difference between a depth calculated assuming a standard ocean and using a measurement of the actual density of 
the ocean will depend on how different the ocean is from the standard ocean, but in general, the difference is surprisingly small. This is the converse of 
why CTD profiles of salinity and temperature as a function of pressure are so effective at measuring the small changes in potential that drive 
geostrophic flows. 

Appendix B. Gravity in the Sea 

B.1 Surface Gravity 

If the earth were a uniform, non-rotating spherical mass, gravity would be a constant magnitude over the surface. However, the rotation, non- 
spherical nature, and uneven mass distribution of the earth cause substantial variation of gravity with location. To account for the rotation and 
non-spherical nature of the earth, both the UNESCO pressure to depth equation and TEOS-10 toolbox use the ellipsoid based GRS 80 gravity model 
(Moritz, 1980) for the surface gravity as a function of latitude, φ. The GRS 80 gravity model assumes the earth is a uniform, rotating ellipsoid. The 
closed form of this ellipsoid gravity model is: 

gGRS80 = ge

(
1 + ksin 2 φ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e2sin 2 φ

√

)

with k =
bgp

age
− 1 (B.1)  

where ge is the normal gravity at the equator, gp the normal gravity at the pole, b is the semi-minor axis, a is the semimajor axis, and e is the first 
eccentricity. 
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This closed form can be expanded in series form to: 

gGRS80(∅ )= 9.780327
(
1+ 5.2790  x  10− 3sin 2 φ+ 2.32  x  10− 5sin 4 φ +…

)
(B.2) 

This is the surface gravity term in both the UNESCO and TEOS-10 pressure to depth conversions. The gravity at the pole is about 0.5% higher than 
the gravity at the equator. Failure to account for this variation with latitude could result in errors of up to 5 m for every km of depth. 

While this ellipsoid model is an improvement on the spherical earth, the actual mass distribution on the earth is not uniform. The result is de-
viations from the GRS 80 modeled gravity at the surface. Gravity anomalies are typically reported in units of mGal. A gal is defined as a cm/s2, so a 
mGal is equivalent to 10− 5 m/s2. While typical surface gravity anomalies are ±50 mGal (RMS value for terrestrial and near coastal points as calculated 
by Hirt et al., 2013), the gravity anomalies are much larger in some areas, particularly above the deep ocean trenches. 

B.2 Gravity at Depth 

For clarity, we present a simple derivation of the vertical gradient of gravity in the sea using a non-rotating, spherical earth model and justify 
neglecting the rotation and ellipsoid nature of the earth. In the supporting documentation for the TEOS-10 manual, McDougal (2010) provided a 
slightly different derivation for the gravity gradient in support of the formulations used in TEOS-10. McDougal also noted that the numerical value of 
the gravity gradient implemented in both the TEOS-10 and UNESCO formula were originally presented by Saunders and Fofonoff (1976) with no 
derivation or supporting references. Because it is so simple, the derivation below is likely not original and is very similar to the approach used by Airy 
(1856). However, the only derivations we can find in the literature are confused between application and approximations (e.g., Karl, 1971); assume a 
constant density with depth (e.g., Airy, 1856; Karl, 1971; McDougal 2010); or use a more complicated ellipsoid model of the earth (e.g., Dahlen, 1982). 
We think including this derivation here is useful both to better generally understand the origin of the gravity gradient in the sea but also because we 
use our derived results to model end-case approximations of the gravity field at the Challenger Deep. 

Consider a spherical earth comprised of shells of uniform density, ρ, that vary with depth. The gravity at the surface of the earth is: 

g0 =
meG
R2

0
(B.3)  

where me is the mass of the earth, G is the universal gravitational constant, and R0 the radius of the earth. As we go below the surface of the earth, or 
descend into the ocean, the effective mass of the earth beneath us is reduced. As shown by Newton (1687), the gravitation attraction inside a spherical 
shell is zero, so we can neglect the gravitational attraction of the shells above us and just calculate the gravitational attraction of the diminishing mass 
of earth beneath us. The mass of a thin shell of thickness dr at a radius r from the center of the earth is: 

ms = 4πr2ρ(r)dr (B.4) 

The mass of a number of shells from the surface to some depth, d = R0 − r, is: 

mS = 4π
∫R0

R0 − d

ρ(r)r2dr (B.5) 

Changing the variable to d from r: 

mS = 4π
∫d

0

ρ(d)(R0 − d)2dd (B.6)  

or 

mS = 4π
∫d

0

ρ(d)R0
2
(

1 −
2d
R0

+
d2

R0
2

)

dd (B.7) 

We can then write the gravity (Eqn B.3) at some depth as 

g(d)=
(me − mS)G
(R0 − d)2 =

(me − mS)G

R0
2
(

1 − d
R0

)2 (B.8) 

Expanding using Taylor series gives:  

g(d)=
(me − mS)G

R0
2

(

1+
2d
R0

+…
)

(B.9) 

Combining Eqn B.7 and Eqn B.9 and simplifying gives the exact solution (if we keep the higher order terms of the expansion): 

g(d)=

⎡

⎣g0 − 4πGρd − 4πG
∫d

0

ρ(d)
(

−
2d
R0

+
d2

R0
2

)

dd

⎤

⎦

[

1+
2d
R0

+…
]

, where ρ=
∫d

0

ρ(d)dd (B.10) 

If d
R0 

is small, terms multiplying G and d
R0 

will be very small, so by setting all terms with G d
R0 

to zero, the gravity as a function of depth is 
approximately: 
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g(d) ≅

[

g0 − 4πGρd +
2dg0

R0

]

(B.11) 

or 

g(d) ≅ g0[1+ γd] (B.12) 

with 

γ =(FS − BS) FS =
2
R0

BS =
4πGρ

g0
(B.13)  

where BS is the term typically referred to as the Bouguer term and FS is the spherical free-air term. Note that the density in the Bouguer term is the 
average density between the surface and the depth of interest. The Bouguer correction has caused confusion in the literature (e.g., Karl, 1971) due to a 
lack of clarity if the calculation is being used to remove the gravitational effect of known topography above the point of interest (where the factor is 2π) 
as opposed to calculating the effect of tunneling through a layer that is figured to have been left in place to calculate the in-situ gravity (where the factor 
is 4π as it is here). 

For a constant seawater density of 1,028 kg/m3, G = 6.6743 x 10− 11 (Newton’s gravitation constant in SI units), and using a value of for the radius 
of the earth, R0, of 6.378 × 106 m, the combination of the Bouguer term and the spherical free-air term gives a γ = 2.26 x 10− 7 1/m or a gravity gradient 
of γg0 = 2.21 x 10− 6 1/s2 or 2,210 Eötvös (E, 1E = 1x10− 9 1/s2). Thus, the nominal gravity gradient in the sea is 2,210 E. This is the value used in both 
the UNESCO and TEOS-10 formulations, such that in both, gravity as a function of depth and latitude is taken as: 

g(∅, d)= gGRS80(∅ )[1+ γd] (B.14)  

where the gGRS80 is given in equation g2 and is γ is 2.26 x 10− 7 1/m. 
In deriving the gravity gradient, we have ignored the both the rotation and non-spherical nature of the earth. We can neglect the rotation in 

calculating the gravity gradient because the change in centripetal acceleration with depth is small (a maximum of 5E at the equator: centripetal 
acceleration = ac = ω2r, dac/dr = ω2 = 5E using the earth’s sidereal rotation rate ω = 7.2 x 10− 5 radians/s). We can also neglect the non-spherical 
nature of the earth in calculating the gradient because this too has a small effect. Gravity as a function of depth for a model of the earth consisting 
of ellipsoid shells of constant density was described by Dahlen (1982), but calculations based on this model show that the difference from the spherical 
model over 11 km of depth is on the order of 10E, and thus small compared to other factors. (W.H.F. Smith, personal communication, 2020). 
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